Divergent phenological response to hydroclimate variability in forested mountain watersheds.

نویسندگان

  • Taehee Hwang
  • Lawrence E Band
  • Chelcy F Miniat
  • Conghe Song
  • Paul V Bolstad
  • James M Vose
  • Jason P Love
چکیده

Mountain watersheds are primary sources of freshwater, carbon sequestration, and other ecosystem services. There is significant interest in the effects of climate change and variability on these processes over short to long time scales. Much of the impact of hydroclimate variability in forest ecosystems is manifested in vegetation dynamics in space and time. In steep terrain, leaf phenology responds to topoclimate in complex ways, and can produce specific and measurable shifts in landscape forest patterns. The onset of spring is usually delayed at a specific rate with increasing elevation (often called Hopkins' Law; Hopkins, 1918), reflecting the dominant controls of temperature on greenup timing. Contrary with greenup, leaf senescence shows inconsistent trends along elevation gradients. Here, we present mechanisms and an explanation for this variability and its significance for ecosystem patterns and services in response to climate. We use moderate-resolution imaging spectro-radiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data to derive landscape-induced phenological patterns over topoclimate gradients in a humid temperate broadleaf forest in southern Appalachians. These phenological patterns are validated with different sets of field observations. Our data demonstrate that divergent behavior of leaf senescence with elevation is closely related to late growing season hydroclimate variability in temperature and water balance patterns. Specifically, a drier late growing season is associated with earlier leaf senescence at low elevation than at middle elevation. The effect of drought stress on vegetation senescence timing also leads to tighter coupling between growing season length and ecosystem water use estimated from observed precipitation and runoff generation. This study indicates increased late growing season drought may be leading to divergent ecosystem response between high and low elevation forests. Landscape-induced phenological patterns are easily observed over wide areas and may be used as a unique diagnostic for sources of ecosystem vulnerability and sensitivity to hydroclimate change.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitrogen Saturation and Retention in Forested Watersheds of the Catskill Mountains, New York

The Catskill Mountains of southeastern New York receive relatively high rates of atmospheric N deposition, and NO3 concentrations in some streams have increased dramatically since the late 1960s. We measured the chemistry of 39 firstand second-order streams with forested watersheds to determine the variability of nitrogen concentrations within the Catskill Mountain area. We found that some stre...

متن کامل

Declining water yield from forested mountain watersheds in response to climate change and forest mesophication.

Climate change and forest disturbances are threatening the ability of forested mountain watersheds to provide the clean, reliable, and abundant fresh water necessary to support aquatic ecosystems and a growing human population. Here, we used 76 years of water yield, climate, and field plot vegetation measurements in six unmanaged, reference watersheds in the southern Appalachian Mountains of No...

متن کامل

Nitrate variability in hydrological flow paths for three mid-Appalachian forested watersheds following a large-scale defoliation

[i] Nitrate (NO^~) leakage from forested watersheds due to disturbance is a well documented but not well understood process that can contribute to the degradation of receiving waters through eutrophication. Several studies have shown that large-scale defoliation and deforestation events in small forested watersheds in the eastern United States cause immediate and dramatic increases in NO^ flux ...

متن کامل

Journal of the American Water Resources Association

About 50 to 80 percent of precipitation in the southeastern United States returns to the atmosphere by evapotranspiration. As evapotranspiration is a major component in the forest water balances, accurately quantifying it is critical to predicting the effects of forest management and global change on water, sediment, and nutrient yield from forested watersheds. However, direct measurement of fo...

متن کامل

Surface water quality is improving due to declining atmospheric N deposition.

We evaluated long-term surface water nitrate and atmospheric nitrogen (N) deposition trends for a group of nine predominantly forested Appalachian Mountain watersheds during a recent multidecadal period (1986-2009) in which regional NOx emissions have been progressively reduced. Statistical analysis showed unexpected linear declines in both annual surface water nitrate-N concentrations (mean =4...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Global change biology

دوره 20 8  شماره 

صفحات  -

تاریخ انتشار 2014